1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
//! An implementation of "reduced tree" LMD GHOST fork choice.
//!
//! This algorithm was conceived at IC3 Cornell, 2019.
//!
//! This implementation is incomplete and has known bugs. Do not use in production.
use super::{LmdGhost, Result as SuperResult};
use parking_lot::RwLock;
use std::collections::HashMap;
use std::fmt;
use std::marker::PhantomData;
use std::sync::Arc;
use store::{iter::BlockRootsIterator, Error as StoreError, Store};
use types::{BeaconBlock, BeaconState, EthSpec, Hash256, Slot};

type Result<T> = std::result::Result<T, Error>;

#[derive(Debug, PartialEq)]
pub enum Error {
    MissingNode(Hash256),
    MissingBlock(Hash256),
    MissingState(Hash256),
    MissingChild(Hash256),
    NotInTree(Hash256),
    NoCommonAncestor((Hash256, Hash256)),
    StoreError(StoreError),
    ValidatorWeightUnknown(usize),
}

impl From<StoreError> for Error {
    fn from(e: StoreError) -> Error {
        Error::StoreError(e)
    }
}

pub struct ThreadSafeReducedTree<T, E> {
    core: RwLock<ReducedTree<T, E>>,
}

impl<T, E> fmt::Debug for ThreadSafeReducedTree<T, E> {
    /// `Debug` just defers to the implementation of `self.core`.
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.core.fmt(f)
    }
}

impl<T, E> LmdGhost<T, E> for ThreadSafeReducedTree<T, E>
where
    T: Store,
    E: EthSpec,
{
    fn new(store: Arc<T>, genesis_block: &BeaconBlock<E>, genesis_root: Hash256) -> Self {
        ThreadSafeReducedTree {
            core: RwLock::new(ReducedTree::new(store, genesis_block, genesis_root)),
        }
    }

    fn process_attestation(
        &self,
        validator_index: usize,
        block_hash: Hash256,
        block_slot: Slot,
    ) -> SuperResult<()> {
        self.core
            .write()
            .process_message(validator_index, block_hash, block_slot)
            .map_err(|e| format!("process_attestation failed: {:?}", e))
    }

    /// Process a block that was seen on the network.
    fn process_block(&self, block: &BeaconBlock<E>, block_hash: Hash256) -> SuperResult<()> {
        self.core
            .write()
            .maybe_add_weightless_node(block.slot, block_hash)
            .map_err(|e| format!("process_block failed: {:?}", e))
    }

    fn find_head<F>(
        &self,
        start_block_slot: Slot,
        start_block_root: Hash256,
        weight_fn: F,
    ) -> SuperResult<Hash256>
    where
        F: Fn(usize) -> Option<u64> + Copy,
    {
        self.core
            .write()
            .update_weights_and_find_head(start_block_slot, start_block_root, weight_fn)
            .map_err(|e| format!("find_head failed: {:?}", e))
    }

    fn update_finalized_root(
        &self,
        new_block: &BeaconBlock<E>,
        new_root: Hash256,
    ) -> SuperResult<()> {
        self.core
            .write()
            .update_root(new_block.slot, new_root)
            .map_err(|e| format!("update_finalized_root failed: {:?}", e))
    }

    fn latest_message(&self, validator_index: usize) -> Option<(Hash256, Slot)> {
        self.core.read().latest_message(validator_index)
    }

    fn verify_integrity(&self) -> std::result::Result<(), String> {
        self.core.read().verify_integrity()
    }
}

struct ReducedTree<T, E> {
    store: Arc<T>,
    /// Stores all nodes of the tree, keyed by the block hash contained in the node.
    nodes: HashMap<Hash256, Node>,
    /// Maps validator indices to their latest votes.
    latest_votes: ElasticList<Option<Vote>>,
    /// Stores the root of the tree, used for pruning.
    root: (Hash256, Slot),
    _phantom: PhantomData<E>,
}

impl<T, E> fmt::Debug for ReducedTree<T, E> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.nodes.fmt(f)
    }
}

impl<T, E> ReducedTree<T, E>
where
    T: Store,
    E: EthSpec,
{
    pub fn new(store: Arc<T>, genesis_block: &BeaconBlock<E>, genesis_root: Hash256) -> Self {
        let mut nodes = HashMap::new();

        // Insert the genesis node.
        nodes.insert(
            genesis_root,
            Node {
                block_hash: genesis_root,
                ..Node::default()
            },
        );

        Self {
            store,
            nodes,
            latest_votes: ElasticList::default(),
            root: (genesis_root, genesis_block.slot),
            _phantom: PhantomData,
        }
    }

    /// Set the root node (the node without any parents) to the given `new_slot` and `new_root`.
    ///
    /// The given `new_root` must be in the block tree (but not necessarily in the reduced tree).
    /// Any nodes which are not a descendant of `new_root` will be removed from the store.
    pub fn update_root(&mut self, new_slot: Slot, new_root: Hash256) -> Result<()> {
        self.maybe_add_weightless_node(new_slot, new_root)?;

        self.retain_subtree(self.root.0, new_root)?;

        self.root = (new_root, new_slot);

        let root_node = self.get_mut_node(new_root)?;
        root_node.parent_hash = None;

        Ok(())
    }

    /// Removes `current_hash` and all descendants, except `subtree_hash` and all nodes
    /// which have `subtree_hash` as an ancestor.
    ///
    /// In effect, prunes the tree so that only decendants of `subtree_hash` exist.
    fn retain_subtree(&mut self, current_hash: Hash256, subtree_hash: Hash256) -> Result<()> {
        if current_hash != subtree_hash {
            let children = self.get_node(current_hash)?.children.clone();

            for child_hash in children {
                self.retain_subtree(child_hash, subtree_hash)?;
            }

            self.nodes.remove(&current_hash);
        }

        Ok(())
    }

    pub fn process_message(
        &mut self,
        validator_index: usize,
        block_hash: Hash256,
        slot: Slot,
    ) -> Result<()> {
        if slot >= self.root_slot() {
            if let Some(previous_vote) = self.latest_votes.get(validator_index) {
                // Note: it is possible to do a cheap equivocation check here:
                //
                // slashable = (previous_vote.slot == slot) && (previous_vote.hash != block_hash)

                if previous_vote.slot < slot {
                    self.remove_latest_message(validator_index)?;
                } else {
                    return Ok(());
                }
            }

            self.latest_votes.insert(
                validator_index,
                Some(Vote {
                    slot,
                    hash: block_hash,
                }),
            );

            self.add_latest_message(validator_index, block_hash)?;
        }

        Ok(())
    }

    pub fn update_weights_and_find_head<F>(
        &mut self,
        start_block_slot: Slot,
        start_block_root: Hash256,
        weight_fn: F,
    ) -> Result<Hash256>
    where
        F: Fn(usize) -> Option<u64> + Copy,
    {
        // It is possible that the given `start_block_root` is not in the reduced tree.
        //
        // In this case, we add a weightless node at `start_block_root`.
        if !self.nodes.contains_key(&start_block_root) {
            self.maybe_add_weightless_node(start_block_slot, start_block_root)?;
        };

        let _root_weight = self.update_weight(start_block_root, weight_fn)?;

        let start_node = self.get_node(start_block_root)?;
        let head_node = self.find_head_from(start_node)?;

        Ok(head_node.block_hash)
    }

    pub fn latest_message(&self, validator_index: usize) -> Option<(Hash256, Slot)> {
        match self.latest_votes.get_ref(validator_index) {
            Some(Some(v)) => Some((v.hash, v.slot)),
            _ => None,
        }
    }

    fn find_head_from<'a>(&'a self, start_node: &'a Node) -> Result<&'a Node> {
        if start_node.does_not_have_children() {
            Ok(start_node)
        } else {
            let children = start_node
                .children
                .iter()
                .map(|hash| self.get_node(*hash))
                .collect::<Result<Vec<&Node>>>()?;

            // TODO: check if `max_by` is `O(n^2)`.
            let best_child = children
                .iter()
                .max_by(|a, b| {
                    if a.weight != b.weight {
                        a.weight.cmp(&b.weight)
                    } else {
                        a.block_hash.cmp(&b.block_hash)
                    }
                })
                // There can only be no maximum if there are no children. This code path is guarded
                // against that condition.
                .expect("There must be a maximally weighted node.");

            self.find_head_from(best_child)
        }
    }

    fn update_weight<F>(&mut self, start_block_root: Hash256, weight_fn: F) -> Result<u64>
    where
        F: Fn(usize) -> Option<u64> + Copy,
    {
        let weight = {
            let node = self.get_node(start_block_root)?.clone();

            let mut weight = 0;

            for &child in &node.children {
                weight += self.update_weight(child, weight_fn)?;
            }

            for &voter in &node.voters {
                weight += weight_fn(voter).ok_or_else(|| Error::ValidatorWeightUnknown(voter))?;
            }

            weight
        };

        let node = self.get_mut_node(start_block_root)?;
        node.weight = weight;

        Ok(weight)
    }

    /// Removes the vote from `validator_index` from the reduced tree.
    ///
    /// If the validator had a vote in the tree, the removal of that vote may cause a node to
    /// become redundant and removed from the reduced tree.
    fn remove_latest_message(&mut self, validator_index: usize) -> Result<()> {
        if let Some(vote) = *self.latest_votes.get(validator_index) {
            if self.nodes.contains_key(&vote.hash) {
                self.get_mut_node(vote.hash)?.remove_voter(validator_index);
                let node = self.get_node(vote.hash)?.clone();

                if let Some(parent_hash) = node.parent_hash {
                    if node.has_votes() || node.children.len() > 1 {
                        // A node with votes or more than one child is never removed.
                    } else if node.children.len() == 1 {
                        // A node which has only one child may be removed.
                        //
                        // Load the child of the node and set it's parent to be the parent of this
                        // node (viz., graft the node's child to the node's parent)
                        let child = self.get_mut_node(node.children[0])?;
                        child.parent_hash = node.parent_hash;

                        // Graft the parent of this node to it's child.
                        if let Some(parent_hash) = node.parent_hash {
                            let parent = self.get_mut_node(parent_hash)?;
                            parent.replace_child(node.block_hash, node.children[0])?;
                        }

                        self.nodes.remove(&vote.hash);
                    } else if node.children.is_empty() {
                        // Remove the to-be-deleted node from it's parent.
                        if let Some(parent_hash) = node.parent_hash {
                            self.get_mut_node(parent_hash)?
                                .remove_child(node.block_hash)?;
                        }

                        self.nodes.remove(&vote.hash);

                        // A node which has no children may be deleted and potentially it's parent
                        // too.
                        self.maybe_delete_node(parent_hash)?;
                    } else {
                        // It is impossible for a node to have a number of children that is not 0, 1 or
                        // greater than one.
                        //
                        // This code is strictly unnecessary, however we keep it for readability.
                        unreachable!();
                    }
                } else {
                    // A node without a parent is the genesis/finalized node and should never be removed.
                }

                self.latest_votes.insert(validator_index, Some(vote));
            }
        }

        Ok(())
    }

    /// Deletes a node if it is unnecessary.
    ///
    /// Any node is unnecessary if all of the following are true:
    ///
    /// - it is not the root node.
    /// - it only has one child.
    /// - it does not have any votes.
    fn maybe_delete_node(&mut self, hash: Hash256) -> Result<()> {
        let should_delete = {
            if let Ok(node) = self.get_node(hash) {
                let node = node.clone();

                if let Some(parent_hash) = node.parent_hash {
                    if (node.children.len() == 1) && !node.has_votes() {
                        let child_hash = node.children[0];

                        // Graft the single descendant `node` to the `parent` of node.
                        self.get_mut_node(child_hash)?.parent_hash = Some(parent_hash);

                        // Detach `node` from `parent`, replacing it with `child`.
                        self.get_mut_node(parent_hash)?
                            .replace_child(hash, child_hash)?;

                        true
                    } else {
                        false
                    }
                } else {
                    // A node without a parent is the genesis node and should not be deleted.
                    false
                }
            } else {
                // No need to delete a node that does not exist.
                false
            }
        };

        if should_delete {
            self.nodes.remove(&hash);
        }

        Ok(())
    }

    fn add_latest_message(&mut self, validator_index: usize, hash: Hash256) -> Result<()> {
        if let Ok(node) = self.get_mut_node(hash) {
            node.add_voter(validator_index);
        } else {
            let node = Node {
                block_hash: hash,
                voters: vec![validator_index],
                ..Node::default()
            };

            self.add_node(node)?;
        }

        Ok(())
    }

    fn maybe_add_weightless_node(&mut self, slot: Slot, hash: Hash256) -> Result<()> {
        if slot > self.root_slot() && !self.nodes.contains_key(&hash) {
            let node = Node {
                block_hash: hash,
                ..Node::default()
            };

            self.add_node(node)?;

            // Read the `parent_hash` from the newly created node. If it has a parent (i.e., it's
            // not the root), see if it is superfluous.
            if let Some(parent_hash) = self.get_node(hash)?.parent_hash {
                self.maybe_delete_node(parent_hash)?;
            }
        }

        Ok(())
    }

    /// Add `node` to the reduced tree, returning an error if `node` is not rooted in the tree.
    fn add_node(&mut self, mut node: Node) -> Result<()> {
        // Find the highest (by slot) ancestor of the given node in the reduced tree.
        //
        // If this node has no ancestor in the tree, exit early.
        let mut prev_in_tree = self
            .find_prev_in_tree(node.block_hash)
            .ok_or_else(|| Error::NotInTree(node.block_hash))
            .and_then(|hash| self.get_node(hash))?
            .clone();

        // If the ancestor of `node` has children, there are three possible operations:
        //
        // 1. Graft the `node` between two existing nodes.
        // 2. Create another node that will be grafted between two existing nodes, then graft
        //    `node` to it.
        // 3. Graft `node` to an existing node.
        if !prev_in_tree.children.is_empty() {
            for &child_hash in &prev_in_tree.children {
                // 1. Graft the new node between two existing nodes.
                //
                // If `node` is a descendant of `prev_in_tree` but an ancestor of a child connected to
                // `prev_in_tree`.
                //
                // This means that `node` can be grafted between `prev_in_tree` and the child that is a
                // descendant of both `node` and `prev_in_tree`.
                if self
                    .iter_ancestors(child_hash)?
                    .take_while(|(_, slot)| *slot >= self.root_slot())
                    .any(|(ancestor, _slot)| ancestor == node.block_hash)
                {
                    let child = self.get_mut_node(child_hash)?;

                    // Graft `child` to `node`.
                    child.parent_hash = Some(node.block_hash);
                    // Graft `node` to `child`.
                    node.children.push(child_hash);
                    // Detach `child` from `prev_in_tree`, replacing it with `node`.
                    prev_in_tree.replace_child(child_hash, node.block_hash)?;
                    // Graft `node` to `prev_in_tree`.
                    node.parent_hash = Some(prev_in_tree.block_hash);

                    break;
                }
            }

            // 2. Create another node that will be grafted between two existing nodes, then graft
            //    `node` to it.
            //
            // Note: given that `prev_in_tree` has children and that `node` is not an ancestor of
            // any of the children of `prev_in_tree`, we know that `node` is on a different fork to
            // all of the children of `prev_in_tree`.
            if node.parent_hash.is_none() {
                for &child_hash in &prev_in_tree.children {
                    // Find the highest (by slot) common ancestor between `node` and `child`.
                    //
                    // The common ancestor is the last block before `node` and `child` forked.
                    let ancestor_hash =
                        self.find_highest_common_ancestor(node.block_hash, child_hash)?;

                    // If the block before `node` and `child` forked is _not_ `prev_in_tree` we
                    // must add this new block into the tree (because it is a decision node
                    // between two forks).
                    if ancestor_hash != prev_in_tree.block_hash {
                        let child = self.get_mut_node(child_hash)?;

                        // Create a new `common_ancestor` node which represents the `ancestor_hash`
                        // block, has `prev_in_tree` as the parent and has both `node` and `child`
                        // as children.
                        let common_ancestor = Node {
                            block_hash: ancestor_hash,
                            parent_hash: Some(prev_in_tree.block_hash),
                            children: vec![node.block_hash, child_hash],
                            ..Node::default()
                        };

                        // Graft `child` and `node` to `common_ancestor`.
                        child.parent_hash = Some(common_ancestor.block_hash);
                        node.parent_hash = Some(common_ancestor.block_hash);

                        // Detach `child` from `prev_in_tree`, replacing it with `common_ancestor`.
                        prev_in_tree.replace_child(child_hash, common_ancestor.block_hash)?;

                        // Store the new `common_ancestor` node.
                        self.nodes
                            .insert(common_ancestor.block_hash, common_ancestor);

                        break;
                    }
                }
            }
        }

        if node.parent_hash.is_none() {
            // 3. Graft `node` to an existing node.
            //
            // Graft `node` to `prev_in_tree` and `prev_in_tree` to `node`
            node.parent_hash = Some(prev_in_tree.block_hash);
            prev_in_tree.children.push(node.block_hash);
        }

        // Update `prev_in_tree`. A mutable reference was not maintained to satisfy the borrow
        // checker. Perhaps there's a better way?
        self.nodes.insert(prev_in_tree.block_hash, prev_in_tree);
        self.nodes.insert(node.block_hash, node);

        Ok(())
    }

    /// For the given block `hash`, find it's highest (by slot) ancestor that exists in the reduced
    /// tree.
    fn find_prev_in_tree(&mut self, hash: Hash256) -> Option<Hash256> {
        self.iter_ancestors(hash)
            .ok()?
            .take_while(|(_, slot)| *slot >= self.root_slot())
            .find(|(root, _slot)| self.nodes.contains_key(root))
            .and_then(|(root, _slot)| Some(root))
    }

    /// For the two given block roots (`a_root` and `b_root`), find the first block they share in
    /// the tree. Viz, find the block that these two distinct blocks forked from.
    fn find_highest_common_ancestor(&self, a_root: Hash256, b_root: Hash256) -> Result<Hash256> {
        let mut a_iter = self
            .iter_ancestors(a_root)?
            .take_while(|(_, slot)| *slot >= self.root_slot());
        let mut b_iter = self
            .iter_ancestors(b_root)?
            .take_while(|(_, slot)| *slot >= self.root_slot());

        // Combines the `next()` fns on the `a_iter` and `b_iter` and returns the roots of two
        // blocks at the same slot, or `None` if we have gone past genesis or the root of this tree.
        let mut iter_blocks_at_same_height = || -> Option<(Hash256, Hash256)> {
            match (a_iter.next(), b_iter.next()) {
                (Some((mut a_root, a_slot)), Some((mut b_root, b_slot))) => {
                    // If either of the slots are lower than the root of this tree, exit early.
                    if a_slot < self.root.1 || b_slot < self.root.1 {
                        None
                    } else {
                        if a_slot < b_slot {
                            for _ in a_slot.as_u64()..b_slot.as_u64() {
                                b_root = b_iter.next()?.0;
                            }
                        } else if a_slot > b_slot {
                            for _ in b_slot.as_u64()..a_slot.as_u64() {
                                a_root = a_iter.next()?.0;
                            }
                        }

                        Some((a_root, b_root))
                    }
                }
                _ => None,
            }
        };

        loop {
            match iter_blocks_at_same_height() {
                Some((a_root, b_root)) if a_root == b_root => break Ok(a_root),
                Some(_) => (),
                None => break Err(Error::NoCommonAncestor((a_root, b_root))),
            }
        }
    }

    fn iter_ancestors(&self, child: Hash256) -> Result<BlockRootsIterator<E, T>> {
        let block = self.get_block(child)?;
        let state = self.get_state(block.state_root)?;

        Ok(BlockRootsIterator::owned(self.store.clone(), state))
    }

    /// Verify the integrity of `self`. Returns `Ok(())` if the tree has integrity, otherwise returns `Err(description)`.
    ///
    /// Tries to detect the following erroneous conditions:
    ///
    /// - Dangling references inside the tree.
    /// - Any scenario where there's not exactly one root node.
    ///
    /// ## Notes
    ///
    /// Computationally intensive, likely only useful during testing.
    pub fn verify_integrity(&self) -> std::result::Result<(), String> {
        let num_root_nodes = self
            .nodes
            .iter()
            .filter(|(_key, node)| node.parent_hash.is_none())
            .count();

        if num_root_nodes != 1 {
            return Err(format!(
                "Tree has {} roots, should have exactly one.",
                num_root_nodes
            ));
        }

        let verify_node_exists = |key: Hash256, msg: String| -> std::result::Result<(), String> {
            if self.nodes.contains_key(&key) {
                Ok(())
            } else {
                Err(msg)
            }
        };

        // Iterate through all the nodes and ensure all references they store are valid.
        self.nodes
            .iter()
            .map(|(_key, node)| {
                if let Some(parent_hash) = node.parent_hash {
                    verify_node_exists(parent_hash, "parent must exist".to_string())?;
                }

                node.children
                    .iter()
                    .map(|child| verify_node_exists(*child, "child_must_exist".to_string()))
                    .collect::<std::result::Result<(), String>>()?;

                verify_node_exists(node.block_hash, "block hash must exist".to_string())?;

                Ok(())
            })
            .collect::<std::result::Result<(), String>>()?;

        Ok(())
    }

    fn get_node(&self, hash: Hash256) -> Result<&Node> {
        self.nodes
            .get(&hash)
            .ok_or_else(|| Error::MissingNode(hash))
    }

    fn get_mut_node(&mut self, hash: Hash256) -> Result<&mut Node> {
        self.nodes
            .get_mut(&hash)
            .ok_or_else(|| Error::MissingNode(hash))
    }

    fn get_block(&self, block_root: Hash256) -> Result<BeaconBlock<E>> {
        self.store
            .get::<BeaconBlock<E>>(&block_root)?
            .ok_or_else(|| Error::MissingBlock(block_root))
    }

    fn get_state(&self, state_root: Hash256) -> Result<BeaconState<E>> {
        self.store
            .get::<BeaconState<E>>(&state_root)?
            .ok_or_else(|| Error::MissingState(state_root))
    }

    fn root_slot(&self) -> Slot {
        self.root.1
    }
}

#[derive(Default, Clone, Debug)]
pub struct Node {
    pub parent_hash: Option<Hash256>,
    pub children: Vec<Hash256>,
    pub weight: u64,
    pub block_hash: Hash256,
    pub voters: Vec<usize>,
}

impl Node {
    pub fn does_not_have_children(&self) -> bool {
        self.children.is_empty()
    }

    pub fn replace_child(&mut self, old: Hash256, new: Hash256) -> Result<()> {
        let i = self
            .children
            .iter()
            .position(|&c| c == old)
            .ok_or_else(|| Error::MissingChild(old))?;
        self.children[i] = new;

        Ok(())
    }

    pub fn remove_child(&mut self, child: Hash256) -> Result<()> {
        let i = self
            .children
            .iter()
            .position(|&c| c == child)
            .ok_or_else(|| Error::MissingChild(child))?;

        self.children.remove(i);

        Ok(())
    }

    pub fn remove_voter(&mut self, voter: usize) -> Option<usize> {
        let i = self.voters.iter().position(|&v| v == voter)?;
        Some(self.voters.remove(i))
    }

    pub fn add_voter(&mut self, voter: usize) {
        self.voters.push(voter);
    }

    pub fn has_votes(&self) -> bool {
        !self.voters.is_empty()
    }
}

#[derive(Debug, Clone, Copy)]
pub struct Vote {
    hash: Hash256,
    slot: Slot,
}

/// A Vec-wrapper which will grow to match any request.
///
/// E.g., a `get` or `insert` to an out-of-bounds element will cause the Vec to grow (using
/// Default) to the smallest size required to fulfill the request.
#[derive(Default, Clone, Debug)]
pub struct ElasticList<T>(Vec<T>);

impl<T> ElasticList<T>
where
    T: Default,
{
    fn ensure(&mut self, i: usize) {
        if self.0.len() <= i {
            self.0.resize_with(i + 1, Default::default);
        }
    }

    pub fn get(&mut self, i: usize) -> &T {
        self.ensure(i);
        &self.0[i]
    }

    pub fn get_ref(&self, i: usize) -> Option<&T> {
        self.0.get(i)
    }

    pub fn insert(&mut self, i: usize, element: T) {
        self.ensure(i);
        self.0[i] = element;
    }
}

impl From<Error> for String {
    fn from(e: Error) -> String {
        format!("{:?}", e)
    }
}